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Experimentally, it turns out that radiation forces from a cw laser on a liquid-liquid interface are able to
produce giant deformations �up to about 100 �m�, if the system is close to the critical point where the surface
tension becomes small. We present a model for such a fingerlike deformation, implying that the system is
described as an optical fiber. One reason for introducing such a model is that the refractive index difference in
modern experiments, such as those of the Bordeaux group, is small, of the same order as in practical fibers in
optics. It is natural therefore to adopt the hybrid HE11 mode, known from fiber theory as the fundamental mode
for the liquid system. We show how the balance between hydrodynamical and radiation forces leads to a stable
equilibrium point for the liquid column. Also, we calculate the narrowing of the column radius as the depth
increases. Comparison with experimental results of the Bordeaux group yields quite satisfactory agreement as
regards the column width.
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I. INTRODUCTION

Force exerted by light on continuous matter has attracted
attention since the days of Maxwell. In 1869 he was the first
to predict and calculate the pressure from light reflecting off
a surface; in 1901 the first attempts of experimental verifica-
tion were made by Lebedev, showing that the light pressure
acts inward to a reflecting surface. Poynting �1� later ex-
tended the knowledge of radiation pressure by considering
light incident from vacuum on the surface of a transparent
dielectric, predicting the irradiation to produce an outward
normal force irrespective of the angle of incidence. More
recently, the experimental paper of Ashkin and Dziedzic
from 1973 is a pioneering work �2�. They illumined an air-
water surface by a focused pulsed laser, verifying that the
force was indeed outward directed. Another recent experi-
ment along the same lines is that of Schroll et al. �3�.

The radiation pressure problem is related to the well-
known Abraham-Minkowski controversy about the correct
form of the electromagnetic energy-momentum tensor in a
medium. That question has been discussed at varying de-
grees of intensity ever since Abraham and Minkowski pre-
sented their energy-momentum expressions around 1910. In
the simplest case, when the medium is isotropic and homo-
geneous, the difference turns up only in the expressions
for the momentum density g: in the Minkowski case
gM=D�B, whereas in the Abraham case, gA= �1 /c2�E�H,
the latter expression satisfying Planck’s principle of inertia
of energy g=S /c2, S being the Poynting vector. For an in-
troduction to the Abraham-Minkowski problem, the reader
may consult Møller’s book on relativity �4�, or the review
article �5�. There is extensive literature in this field; some
papers are Refs. �6–13�. Fortunately, for practical purposes
the difference between the Abraham and Minkowski predic-
tions goes away in optics because the influence from the
“Abraham term” fluctuates out. The force can be calculated

from the electromagnetic stress tensor parts only, and the
stress tensors are equal in the two cases. We shall take this
into account in the following, and simply call the force the
Abraham-Minkowski �AM� force.

A major reason why radiation forces have attracted in-
creased interest in recent years is their practical usefulness.
In biology and medicine the need for noninvasive techniques
for manipulation of individual cells or complex molecules
has led to the development of optical tweezers, invented by
Ashkin et al. in 1986 �14�. Furthermore, fluid-interface insta-
bilities driven by the relatively strong forces from electric
field �15,16� represent the cornerstone of many industrial
processes such as electrospraying �17�, ink-jet printing �18�,
and surface relief printing �19�.

An important progress in the application of pressure
forces is to make use of two liquids in the vicinity of the
critical point. Then the surface tension is significantly dimin-
ished, and the effect of the pressure forces becomes en-
hanced. Traditionally, due to the competition with surface
forces, the pressure effect has been rather minute. For in-
stance, in the Ashkin-Dziedzic air-water pressure experiment
�2�, with surface tension equal to �=73 mJ /m, the deflection
of the water surface acted upon by a pulsed Nd YAG laser
was only about 1 �m. Working near the critical point, the
deflection can be much higher, about 50 �m or more. More-
over, in a two-fluid system of surfactant-coated nanodroplets
in oil microemulsions the surface tension can be made more
than 1�106 times smaller than the usual air-water tension
�cf., for instance, Ref. �20��.

The main purpose of the present paper is to introduce a
fiber model for the large finger-shaped deformations. Inter-
esting work, both experimental and theoretical, has in recent
years been done in this direction by the Bordeaux group,
considering diverse effects arising from the focusing of laser
beams onto a fluid-fluid interface having extremely low sur-
face tension. Much of this work, up to 2002, is summarized
in the Ph.D. thesis of Casner �21�. There are several recent
papers by this group �3,22–26�. There is also a review paper
�27�, and related papers of others such as �28�. Whereas the
first experimental and theoretical investigations dealt with
small deformations in the hydrodynamic linear regime, the
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most recent experiments have demonstrated the appearance
of giant surface deformations of order 50–100 �m. Large
finger-shaped structures have been observed, as well as liq-
uid jets and shedding of microdroplets.

A theoretical description of these finger-shaped deforma-
tions is still lacking. Nor will we in the present paper attempt
to give a quantitative estimate of the large deformations. In-
stead, we will show one can calculate a stable equilibrium
radius of the liquid column. As is conventional in fiber op-
tics, we take the HE11 mode to be dominant for a steplike
fiber having a weak refractive index difference between core
and cladding. This dominance occurs if the refractive index
contrast is small, about 0.01. Actually, this fits quite well
with the conditions of the Bordeaux experiments. It means
that the central core becomes exposed to a laser intensity
differing in shape and intensity from the conventional Gauss-
ian intensity distribution.

There is another advantage of this kind of wave descrip-
tion. The radiation pressure is predicted to be nonvanishing
even on the vertical walls of the cavity. The magnitude of the
pressure is of the same order as the pressure from a Gaussian
beam on a flat surface at normal incidence. Such a pressure is
not obtainable using a ray picture of the beam; in such a
case, the �orthogonal� pressure on a parallel wall is simply
zero. In our approach this problem is avoided.

Section II gives, for the sake of readability, a brief ac-
count of the theoretical background in the linear case al-
though this material is strictly speaking not new. In particu-
lar, we review how the equation of force equilibrium is
solved when the input laser intensity is Gaussian. Section III
then introduces our step-index fiber model. We use this
model, as we indicated, to show how the balance of hydro-
dynamical and radiation forces leads to a stable equilibrium
radius for a given power P in the laser beam. Comparison
with the giant deformations observed in the Bordeaux ex-
periments shows reasonably good agreement.

II. THEORETICAL BACKGROUND, LINEAR THEORY

The electromagnetic force density f in an isotropic, non-
conductive, and nonmagnetic medium �see, for instance,
Refs. �5,29��, is

f = −
�0

2
E2 � n2 +

�0

2
�E2�� �n2

��
�

T
� +

n2 − 1

c2

�

�t
�E � H� .

�1�

We employ Système International �SI� units so that the rela-
tion �0�0=1 /c2 refers to a vacuum, and let � be a relative
quantity so that the constitutive relations are D=�0�E, B
=�0H. The medium is assumed to be nondispersive. Only
the first term in Eq. �1� contributes in our case; as mentioned
above this is the Abraham-Minkowski �AM� force

fAM = −
�0

2
E2 � n2. �2�

The geometry is sketched in Fig. 1 �we assume illumination
of the surface from below�. The incident wave is taken to be
monochromatic, E�i�=E�i��r�e−i�t. The plane of incidence is

formed by the vectors ki and n; the angle of incidence is �i
and the angle of transmission is �t �see Fig. 1�. Let E	 and
E� be the components of E parallel and perpendicular to the
plane of incidence; then the respective transmission coeffi-
cients are

T	 =
sin 2�i sin 2�t

sin2��i + �t�cos2��i − �t�
, �3�

T� =
sin 2�i sin 2�t

sin2��i + �t�
. �4�

Let I=�0n1c
E�i�2
� �averaged over the two polarizations� be

the intensity of the incident beam. If 	 is the angle between
E�i� and the plane of incidence, so that E	

�i�=E�i� cos 	 ,E�
�i�

=E�i� sin 	, we can write the surface pressure as �27,28�

�AM = −
I

2c

n2
2 − n1

2

n2

cos �i

cos �t
��sin2 �i + cos2 �t�T	 cos2 	

+ T� sin2 	�n . �5�

Now let the liquid-liquid interface be represented as z
=h�r ,�� in cylindrical coordinates �r=�x2+y2� and assume
azimuthal symmetry, so that h��h /��=0. Observing that
cos �i= �1+hr

2�−1/2, sin �i=hr�1+hr
2�−1/2 �hr�h /�r� as well

as the corresponding relations for �t we obtain, upon substi-
tution into Eq. �5�,


 =
2n1I

c

1 − N

1 + N
f�hr,	� , �6�

where

N = n1/n2 � 1

is the refractive index ratio and f�hr ,	� is the function

f�hr,	� =
�1 + N�2

�N + �1 + hr
2�1 − N2��2�sin2 	

+
1 + �3 − N2�hr

2 + �2 − N2�hr
4

�Nhr
2 + �1 + hr

2�1 − N2��2
cos2 	� . �7�

Now it turns out that the polarization plays no important part
in the present problem. This can be seen by plotting the
normalized radiation force for different values of the angle 	
�not shown here; some more details can be found in Refs.

2
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qt
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FIG. 1. Laser wave incident upon an interface separating media
1 and 2, where the index of refraction n1�n2. The electromagnetic
surface force is directed toward the optically thinner medium irre-
spective of the laser light’s direction of propagation.
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�28,31��. Taking N=0.986, a physically realistic value in the
Bordeaux experiments, it is hard even to separate the curves
for varying values for 	. In the actual experiments the values
of N were indeed near unity. This gives an expression for
f�hr ,	�→ f�N ,hr�, averaged over the angle 	, that is more
than accurate enough for our purpose:

f�N,hr� = �1 + N2�
1 + �2 − N2�hr

2 + hr
4 + Nhr

2S

�N + S�2�Nhr
2 + S�2 , �8�

where S�1+hr
2�1−N2�.

The system that we shall consider is comprised of two
near-critical oil-emulsions separated by an interface, caused
by the density contrast between the liquids. It is useful to
introduce the Bond number, describing the relative strength
of buoyancy in comparison to the Laplace force:

B = ��0

lC
�2

. �9�

Here �0 is the radius of the beam waist, and lC is the capil-
lary length,

lC =� �

��1 − �2�g
, �10�

where � is the surface tension, �1 and �2 are the densities of
the lower and upper liquids, and g is the gravitational accel-
eration. In the experiments of Casner and Delville, the Bond
numbers were in the range from 10−3 to about 4. If B�1, the
gravitational force is much weaker than the surface-tension
force.

An advantage of near-critical systems is the possibility to
tune fluid properties continuously by varying the tempera-
ture. Many physical quantities scale with temperature as
��T−TC� /TC��, where � is a constant �see, for instance,
�30��. Detailed information about liquid properties near to
the critical point is available elsewhere �23,24,27,28� and
will not be repeated here.

Consider now the governing equation for the liquid-liquid
surface elevation. Under stationary conditions the elevation
is determined by the balance of radiation pressure, surface
tension, and gravity. Applying Laplace’s formula for the
pressure difference p2− p1, we obtain �27,28�

��gh�r� −
�

r

d

dr� rhr

�1 + hr
2� = −

2I�r�
c

n1
n2 − n1

n2 + n1
f�N,hr� ,

�11�

where ��=�1−�2�0. The equation can be solved numeri-
cally once I�r� is known.

Let us assume a Gaussian form:

I�r� =
2P

��0
2e−2r2/�0

2
, �12�

where P is the total power. It is convenient to introduce the
dimensionless variables R=r /�0, H�R�=h�r� /�0, whereby
Eq. �11� can be written in dimensionless form:

BH −
1

R

d

dR� RHR

�1 + HR
2 � = − Fe−2R2

f�N,HR� , �13�

with

F �
2P��n/���
�cg�0lC

2 . �14�

The function f�N ,HR� is the same as given by Eq. �8�
above, except from the replacement hr→HR. As before, B
= ��0 / lC�2 is the Bond number, and ��n /���=1.22
�10−4 m3 /kg �21�. The ratio N, and the capillary length lC,
are the only temperature-dependent parameters. Thus there
are three parameters in Eq. �13�, namely, the temperature
difference �T, the beam waist �0, and the beam power P.

Numerical solutions of Eq. �13� are shown in Fig. 2. Simi-
lar results are presented in Ref. �28�, except that in the
present case the theoretical curve is compared directly with
experimental data from the Bordeaux group. Profiles of the
deformations are extracted from images taken by a charge-
coupled device �CCD� camera �provided by Jean-Pierre
Delville �personal communication��. As is seen, the numeri-
cal solution gives excellent results for a laser power of P
=450 mW, beam waist �0=5.3 �m, and �T=T−TC=3.5 K.
If the laser power is increased, the correspondence between
theory and experiment becomes poorer. For instance, inser-
tion of the large power P=1200 mW in the formulas would
lead to a considerable overprediction �about 50%� of the sur-
face displacement. This concludes our overview of the linear
theory.

III. ELECTROMAGNETIC WAVE ANALYSIS

When the power of the laser is increased �for a fixed beam
width� beyond a certain threshold, the behavior of the liquid-
liquid interface deformation becomes nonlinear. It has been
observed that a “shoulder” appears in the case where light
propagates in the upward direction �cf., for instance, Ref.
�21��. If the light propagates downward, the deformations
become very large and cylinderlike, eventually forming a jet.
The deformations may even form a liquid bridge crossing a
central layer of fluid. In such a case it is natural to suggest
that the deformations, or rather the liquid column, may be
regarded as an optical fiber, capable of guiding the laser-light
due to internal reflections. As already mentioned, this is the
main idea of the present paper. Furthermore, the deforma-
tions and columns tend to have vertical walls, which corre-
sponds to �hr�→�.

Examining the expression �6� for the radiation pressure, it
can be seen that �see Fig. 3�


AM → 0 when �hr� → � ,

implying that the radiation force vanishes, leaving only the
forces of surface tension and gravity, which both act against
any deformation of the interface. This result is obviously
unphysical, since both steep-walled deformations, and the
liquid columns, are stationary structures. This means that the
following two usual assumptions:

�i� the laser-beam intensity distribution is Gaussian, and
stays Gaussian also in the region being deformed; and
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�ii� ray optics may be used to describe the path of a light
beam within the deformation, must be invalid. Regarding the
intensity distribution, one can argue that the geometrical
change of the illuminated interface will result in new bound-
ary conditions that the electromagnetic field must satisfy. In
turn, this gives rise to a different, and unknown, intensity
distribution within the huge deformations characteristic of
the nonlinear regime. Also, ray-optics may give a poor de-
scription of the propagation of the electromagnetic waves
within the structure. In our optical fiber model the core of
radius r=a is the upper liquid, and the cladding is the sur-
rounding liquid �the lower liquid�. Solving Maxwell’s equa-
tions for such a geometry, and relating the power flow
through the structure to the power of the incident laser beam,
one should be able to obtain a more reliable expression for
the radiation pressure, and give an estimate for its magni-
tude.

A. Derivation of the modified radiation force

Assume as before plane-wave propagation and sinusoidal
time-dependence of the fields, E ,Be−i�t. Maxwell’s equa-
tions may be combined to give the following Helmholtz
wave equations for H and E �cf., for instance, Ref. �32��:

�2H +
n2�2

c2 H = i��0��n2� � E , �15�

�2E +
n2�2

c2 E = − �� 1

n2 ��n2� · E� . �16�

By taking the z components of Eqs. �15� and �16�, and elimi-
nating the transverse field components, one finds the two-

dimensional scalar wave equations for the system,

�t
2Hz + �2Hz − � �

�c
�2

��tn
2��tHz = −

�kz�0

�2 ẑ · ��tn
2 � �tEz� ,

�17�

and

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

hr

Π
(h

r
)/

Π
(h

r
=

0)

FIG. 3. The function f�N ,hr� goes to zero as hr grows large, i.e.,
when the walls of the deformation, or the liquid column, are
�nearly� vertical. The only remaining forces are then the Laplace
force and the hydrostatic pressure force, both acting inward. This
implies that the column or deformation should collapse in on itself,
which it evidently does not.
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FIG. 2. �Color online� Experimental versus numerical results at temperature such that �T=T−TC=3.5 K, and with a laser beam waist of
�0=5.3 �m at a power of 450 mW.
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�t
2Ez + �2Hz − � kz

�n
�2

��tn
2��tEz =

�kz�0

�2n2 ẑ · ��tn
2 � �tHz� .

�18�

where �t
2=�2−�z

2 is the transverse part of the Laplacian op-
erator. The solutions to these equations are

�Ez,Hz� = �Ae,Ah�Jm��r�eim�+ikzz−i�t, r � a �19�

and

�Ez,Hz� = �Be,Bh�Km��r�eim�+ikzz−i�t, r � a . �20�

Here, m is an integer, Jm is the mth Bessel function of the
first kind, and Km is a modified Bessel function. The radius
of the deformation �the core radius� is r=a. The constants
Ae , Ah , Be, and Bh are determined from the boundary con-
ditions at r=a. Furthermore,

�2 = �2n2
2/c2 − kz

2 = k0
2n2

2 − kz
2  k2

2 − kz
2 �r � a� ,

�2 = kz
2 − �2n1

2/c2 = kz
2 − k0

2n1
2  kz

2 − k1
2 �r � a�

are the radial propagation constants. kz is the longitudinal
wave number, given by kz=k2 cos �, with � being the angle
of propagation. See Fig. 4. Note that k0=� /c refers to the
vacuum, k2=k0n2 refers to the core, and k1=k0n1 refers to the
cladding.

Inserting the solutions �19� and �20� into the wave equa-
tions �17� and �18�, one can find the radial and azimuthal
field components. Detailed calculations are given in the
books of Stratton �29� and Okamoto �33�. One has to observe
that there are multiple solutions to Maxwell’s equations for
the step-index geometry, corresponding to different modes of
propagation. We restrict ourselves here to giving the expres-
sions for the radial and azimuthal components for the electric
field inside the fiber, r�a,

Er = �i
kzAe

�
Jm� ��r� −

��0mAh

�2r
Jm��r��eim�+ikzz−i�t,

E� = − � kzmAe

�2r
Jm��r� + i

��0Ah

�
Jm� ��r��eim�+ikzz−i�t,

Ez = AeJm��r�eim�+ikzz−i�t, �21�

and similarly the H field for r�a,

Hr = �i
kzAh

�
Jm� ��r� +

��0n2
2mAe

�2r
Jm��r��eim�+ikzz−i�t,

H� = �−
kzmAh

�2r
Jm��r� + i

��0n2
2Ae

�
Jm� ��r��eim�+ikzz−i�t,

Hz = AhJm��r�eim�+ikzz−i�t. �22�

The prime on the Bessel functions indicates differentiation
with respect to the argument �r.

The aim now is to determine the allowed discrete angles
� at which the light rays may propagate, corresponding to
the allowed modes of propagation. We begin by defining the
normalized transverse wave numbers as

u  �a = a�k2
2 − kz

2, �23�

w  �a = a�kz
2 − k1

2. �24�

Furthermore, the wave numbers u and w are related, from
Eq. �36�, as

u2 + w2 = k0
2�n2

2 − n1
2�a2  v2, �25�

referred to as the normalized frequency. The boundary con-
ditions are that the tangential field components are continu-
ous across r=a. From them the general dispersion relation is
constructed, valid for all values of N=n1 /n2�1 �33�:

� Jm� �u�
uJm�u�

+
Km� �w�

wKm�w��� Jm� �u�
uJm�u�

+ N2 Km� �w�
wKm�w��

= m2� 1

u2 +
1

w2�� 1

u2 +
N2

w2� . �26�

B. Fundamental mode of the step-index fiber: Calculation
of the equilibrium radius

To simplify the discussion, we shall from now on consider
only the fundamental mode of the step-index optical fiber.
This mode corresponds to the m=1 solution of the scalar
wave equation and is called a hybrid mode. The fundamental
mode of a step-index optical fiber is the HEm=1,l=1 mode,
corresponding to both Ez and Hz nonzero �33,34�, in contrast
to the transverse electric �TE� and transverse magnetic �TM�
modes which correspond to m=0 having Ez and Hz equal to
zero, respectively, but which possess low cutoff frequencies.

The index l=1 corresponds to the first root of the disper-
sion relation satisfying k1�kz�k2. The HE11 mode has no

u

z

1n

a

2n1n

FIG. 4. Section of the deformation modeled as an optical step-
index fiber.
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cutoff frequency; this is the reason why it is regarded as the
fundamental mode of a step-index fiber. For a typical fiber in
optics, the relative refractive index difference �=1−n1 /n2 is
on the order of 0.01. This suits well with the conditions of
the Bordeaux experiments: with the typical value of N
=0.986 as mentioned above, we get �=0.014, which is quite
appropriate. Under such conditions the confinement of light
in the core is not so tight �this is called the weakly guiding
approximation�. The approximation N�1 allows one to sim-
plify the theory of optical fibers very much and to obtain
clear-cut results. The accuracy of adopting the HE11 mode as
a basis in our model should be more than sufficient.

A sketch of the intensity distribution for this mode is
given in Fig. 5. Numerically solving the dispersion relation
�26� for a given fiber radius a, we obtain the wave number kz
corresponding to that particular radius. Repeating this proce-
dure for a range of radii, and with all field components being
known, we can calculate the components of the Abraham-
Minkowski surface force density on the interface of a fiber
with a given diameter. The expression for the AM surface
pressure reads

�AM =
�0

2
�n2

2 − n1
2��E�

2 + Ez
2 + N−2Er

2�r=a−n . �27�

Here

n = �1 + hx
2 + hy

2�−1/2�hx,hy,− 1� �28�

is the normal vector to the interface, pointing from the inter-
nal medium 2 to the external medium 1. If S= 1

2 �E�H*�
denotes the Poynting vector, the total power P carried by the
optical fiber plus the cladding is given by

P = �
0

2� �
0

�

Szrdrd� =
1

2
�

0

2� �
0

�

�ErH�
* − E�H

r
*�rdrd� .

�29�

Some calculation yields

P = Pcore + Pclad =
�

4
�0ca2�A�2�n2F�J0,J1� + n1

J1
2

K1
2G�K0,K1�� ,

�30�

where

F�J0,J1� 
kz

2a2

u2 ��1 + s2��J0
2 + J1

2� −
2

u2 �1 + s�2J1
2�

+ J0
2 + J1

2 −
2J0J1

u
, �31�

and

G�K0,K1� 
kz

2a2

w2 ��1 + s2��K1
2 − K0

2� +
2

w2 �1 + s�2K1
2�

+
2

w
K0K1. �32�

Here, it is understood that Jn ,Kn=Jn�u� ,Kn�u�. The constant
A is equal to Ae above, and Be has been eliminated via the
boundary condition Ez�a− �=Ez�a+ �. The parameter s is
given by

s 
� 1

u2 +
1

w2�
� J1��u�

uJ1�u�
+

K1��w�
wK1�w��

� − 1 �33�

�cf. Ref. �33��. When the steepness is large �hr�1� the ex-
pression for the Laplace force in the radial direction takes on
the simple form

fL = − lim
hr→�

�

r

d

dr

rhr

�1 + hr
2

= −
�

r
. �34�

The force balance may then be written as

− ��gh�r = a� +
�

a
= 
AM�r = a� . �35�

This equation can be interpreted physically: The right-hand
side is the AM surface force density acting outward. It is
positive because n2�n1. This force is balanced by the
Laplace force � /a acting inward, plus the net hydrostatic
pressure −��gh�r=a�=−��1−�2�gh�r=a�, which also acts
inwards because �1��2. Notice that h�r� is a negative quan-
tity. We do not regard a as a fixed parameter, but rather
determine the magnitude of the radiation pressure for a range
of given values of a, and subsequently find the correspond-
ing equilibrium radii where the radiation pressure exactly
balances the forces of surface tension and hydrostatic pres-
sure. Ergo, the thickness of the liquid column will vary with
depth. For a given depth, the hydrostatic pressure difference
is known, and then it is easy to determine the new equilib-
rium radius a. Notice that we still regard the structure as an
ideal step-index fiber, although in fact it is not. The fiber
rather resembles a tapered cylinder, which would require a
different solution to Maxwell’s equations to get exact results;
but in our model, it seems reasonable to regard the fiber

FIG. 5. The intensity distribution for the HE11 mode in a step-
index fiber of radius a=2 �m, at a laser beam power of 500 mW,
and with �T=3.5 K. Broken lines indicate the fiber boundary.
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locally �with depth� as an optical cylindrical guide with zero
taper.

Figure 6 shows how the electromagnetic radiation AM
force varies versus the fiber radius a, for given values of �T
and P. The combined pressure of surface tension �the
Laplace force� and gravity �hydrostatic pressure� is also plot-
ted. Intersect points correspond to equilibrium radii. Notice
the middle set of curves with power P=150 mW. Here, the
termination point of the liquid column can clearly be seen.
As the depth increases beyond 550 �m, the outward acting
AM force can no longer support the liquid column due to
increasing hydrostatic pressure and surface tension. The
model therefore predicts that at these parameter values, the
liquid column can maximally reach a depth of �500 �m
before collapsing, in good correspondence with observed
breakups of the liquid columns into droplet spraying jets at
depths of around 1000 �m. In our simple model we do not
take into account the fluid flow inside the column; neverthe-
less, the model offers a simple and intuitive explanation of
the observed pinch off of the columns.

With increasing temperature difference �T the radiation
force becomes weaker relative to the Laplace force and the
hydrostatic pressure �details not shown here�. This behavior
is expected, since the surface tension is temperature depen-
dent and an increase in �T leads to a higher surface tension.
Now the hydrostatic pressure slightly increases as the density
contrast increases, but this is not of great importance since
the term ��gh is very small. The net behavior is that for
higher �T the equilibrium radii become smaller.

In Fig. 7, the two left panels refer to temperature differ-
ences, �T= �3.5,1.5� K, and to a moderate power, P

=200 mW. These parameter values make our model quite
justifiable, as can be seen from the following argument.

�1� When �T is small the relative refractive index be-
comes also small, in our case amounting to 0.55% �i.e., �
=1−n1 /n2=0.0055�. The microemulsion liquid used in the
Bordeaux experiments had a temperature-dependent refrac-
tive index of around 1.46 ��21��. The laser used was an argon
laser operating in the TEM00 mode, with a vacuum wave-
length of �0=0.514 �m. From these values we calculate the
normalized frequency

v = k0a�n2
2 − n1

2 = 1.88a ��m� . �36�

�2� The second point is that for moderate powers the equi-
librium radii for the liquid column become small. Physically,
the reason is that the AM outward pressure is not strong
enough to widen the column very much. The two left panels
in Fig. 7 show that for P=200 mW the radii are about 1 �m.
It is instructive here to compare with Fig. 3 in Okamoto’s
book �33�, which shows the occurrences of multiple modes
in a typical single-step fiber. As long as v is less than about
2.4, only the basic HE11 mode appears. For increasing v, up
to 3.5, perhaps even higher, there occurs a mixture with the
next HE21 mode, but we find it reasonable to expect that the
basic mode is the dominant one at least up to about v=3.
Insertion of a=1 �m in Eq. �36� yields v�2. Accordingly,
the single-mode model ought in this case to be a viable one.
Also, we note from Fig. 7 that the uniform-cylinder model of
the column turns out to be a good approximation, as the
slope of the column is large, �hr��104.
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rf
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AM force at P = 150 mW, ∆T = 3.5 K
Laplace + hydrostatic, h = −550 µm, ∆T = 3.5 K
AM force at P = 200 mW, ∆T = 3.5 K
Laplace + hydrostatic, h = −600 µm, ∆T = 3.5 K
AM force at P = 200 mW, ∆T = 1.5 K
Laplace + hydrostatic, h = −600 µm, ∆T = 1.5 K

FIG. 6. �Color online� The electromagnetic radiation pressure �AM force� plotted as a function of varying fiber radius a, at given
temperature �T and beam power P.
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Actually, it seems that the above limits for the applicabil-
ity of the single-mode model may be stretched considerably.
The third panel of Fig. 7 shows the predicted column width
when the power is high, P=1750 mW. This is in violation of
the single-mode condition, but still the calculated results
yield a figure visually quite similar to the experimental de-
formation shown in the rightmost frame. The last-mentioned
frame, taken from Ref. �21�, shows a long jet with large
radius, a�7 �m. The good agreement between theory and
experiment indicates that the single-step model is quite ro-
bust.

The last point that we shall focus attention on is the ob-
served termination, or “pinch off,” of the liquid column at
large depths where the radius becomes small. We can obtain
a semiquantitative explanation of this effect on the basis of
our model. Namely, when a becomes smaller than about
0.6 �m the repulsive AM radiation force is no longer able to
withstand the inward directed Laplace and hydrostatic forces
�there is no equilibrium point in Fig. 6� and the column has
to collapse. What one actually observes in experiments is
that the column breaks up into a row of small droplets. In
Figs. 7�a� and 7�b�, the theoretical pinch off of the columns
is seen to occur at depths of around 1000 �m. At equal
power, the column stretches deeper when the surface tension
is lower ��T=1.5 K�. It is, moreover, observed that the
breakup occurs in the case of illumination from above only.

Our model is, however, unable to explain that particular ef-
fect. No theory for it seems to be known.

IV. SUMMARY

Let us summarize our work as follows.
�1� Our main idea has been to model the large fingerlike

deformations, the liquid columns and liquid jets seen in laser
optics experiments, as optical waveguides or fibers. We have
identified the electric field components of a step-index fiber,
identifying the HE11 mode as the fundamental mode. The
HE11 mode is a hybrid mode, thus more complicated than the
conventional TE and TM modes in that the axial electromag-
netic fields Ez and Hz are not zero, but it is precisely this
mode that is the dominant one in conventional step-index
fibers when the index contrast N=n1 /n2 is close to 1 �33�.
The fact that the giant deformations are seen experimentally
in the vicinity of the critical point when N�1 makes our
fiber model very natural from a physical viewpoint. More-
over, the experiments performed by the Bordeaux group
�21,3,22–26� correspond just to N�1.

�2� In Sec. II we reviewed the linear theory, showing how
the elevation of the interface can be calculated with quite
good accuracy for low laser powers P when comparing with
the Bordeaux experiments. No attempt was, however, made
to calculate the elevations in the nonlinear, high-power case.
In particular, we did not consider the formation of a “shoul-
der” as seen experimentally upon illumination from below.
No theory for the nonlinear case seems so far to exist. In-
stead, we made use of our model to show how the balance
between hydrodynamical and radiation forces leads to the
establishment of stable radii for the liquid column. See Fig.
6. This means that a physical explanation is given for the
establishment of these giant structures. We emphasize that
such a result is not obtainable from conventional radiation
theory assuming a Gaussian intensity profile for the incident
laser beam. Our intensity distribution described by the HE11

mode is different from the Gaussian form. See the more de-
tailed discussion on this point in the first part of Sec. III.

�3� Our comparisons with experiments are all made with
reference to the Bordeaux group. Figure 7 shows how our
calculated values for the column radius a correspond quite
well with the values observed. In particular, the narrowing of
the width for increasing depths is reproduced. Such a nar-
rowing, by a factor of 2 or more, is typically seen in experi-
ments �Jean-Pierre Delville �personal communication��.

Note added. Recently, we became aware of two papers by
the Bordeaux group �35,36�. These papers report on both
theoretical and experimental work. As for the theoretical
parts, they are closely related to our above approach.
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FIG. 7. �Color online� Calculated interface deformation result-
ing from the balance between the modified AM force, the Laplace
force, and the hydrostatic force. �a� and �b� P=200, and �T
= �3.5,1.5� K, respectively. At this moderate power level and values
of �T, the radii of the columns are, according to the model, around
1 �m, thus satisfying the single-mode condition of the step-index
fiber. At high power P=1750 mW and �T=6 K, shown in �c�, the
column is predicted to be slightly wider with a radius from
1.5 to 3 �m. �d� Taken from Ref. �21�, it shows the liquid column
resulting from illuminating the surface from above with a laser at
P=1750 mW, and with T−TC=6 K. In Ref. �21� it is stated that the
jet is about 1000 �m deep, with a radius around 7 �m, i.e., of the
same order of magnitude as that calculated in our model.
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